

Investigation of the compressive behaviour of carbon/glass fibre hybrid composites with 4-point flexural test

Aree Tongloet

Supervisor: Michael R. Wisnom, Xun Wu

4 April 2023

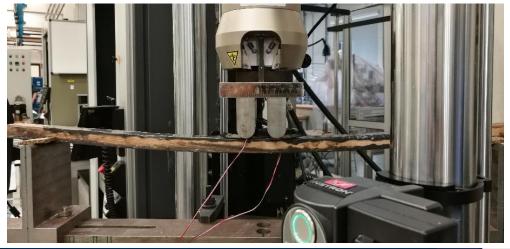
bristol.ac.uk/composites

Outline of the presentation

- Aims of the study
- Specimen configurations and experiment setup
- Result summary
- Conclusion of hybrid composites result under 4-point flexural test
- Future works

Aims of the study

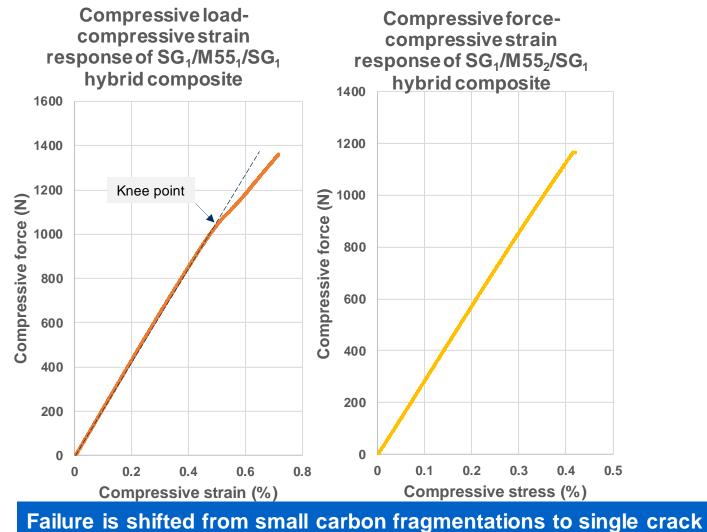
- Investigate the compressive failure strain of the glass/high modulus and glass/standard modulus carbon fibre hybrid composites
- Investigate the failure mechanism of hybrid composites with different absolute carbon fibre thicknesses.

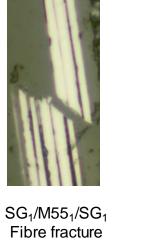

Specimen configurations and experiment setup

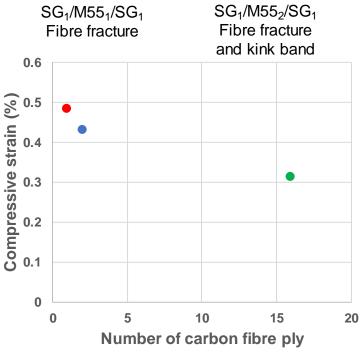
Sandwich beam configurations	Carbon fibre thickness (mm)
[SG ₁ /M55 ₁ /SG ₁]/Ash wood 18 mm/[IM7/8552 ₄]	0.03
[SG ₁ /M55 ₂ /SG ₁]/Ash wood 18 mm/[IM7/8552 ₅]	0.06
[SG ₁ /M55 ₁₆ /SG ₁]/Ash wood 18 mm/[IM7/8552 ₁₀]	0.48
[SG ₁ /TC33 ₁ /SG ₁]/PMMA 20 mm/[IM7/8552 ₄]	0.03
[SG ₁ /TC33 ₂ /SG ₁]/PMMA 20 mm/[IM7/8552 ₅]	0.06
[SG ₁ /TC33 ₁₆ /SG ₁]/PMMA 20 mm/[IM7/8552 ₆]	0.48

Experiment setup

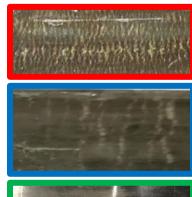
- 4-point bending fixture with Instron universal testing machine
 - The larger roller diameter can prevent roller failure from loading noses
- Attach strain gauges on top and bottom skin to measure compressive and tensile strains







Result summary: SG₁/M55_n/SG₁

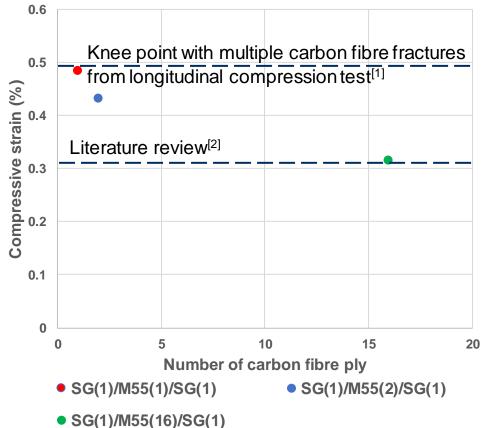


SG(1)/M55(1)/SG(1)
SG(1)/M55(2)/SG(1)
SG(1)/M55(16)/SG(1)

SG₁/M55₁₆/SG₁ Kink band

BRISTOL

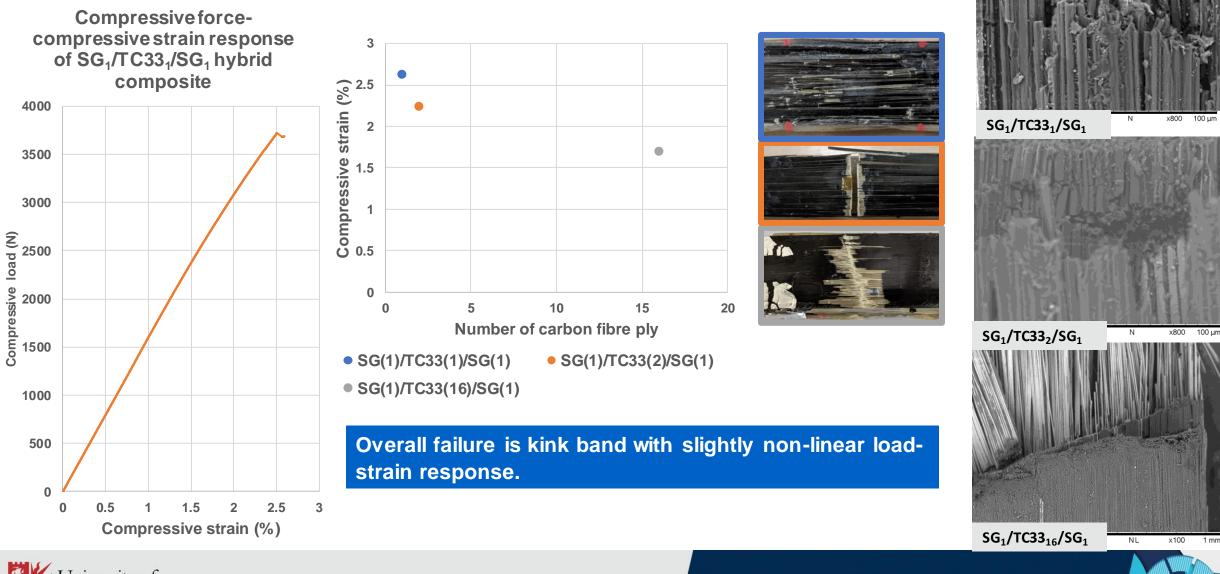
with kink band.


Result summary: SG₁/M55_n/SG₁

Specimen configuration	Knee-point compressive strain (%)	Failure compressive strain (%)	Failure compressive force (N)	Failure mode
SG/M55 ₁ /SG	0.484 (3)	-	1800 (10)	Small carbon fragmentation
SG/M55 ₂ /SG	-	0.431 (2)	1135 (3)	Limited carbon fragmentation
SG/M55 ₁₆ /SG	-	0.314 (3)	1859 (5)	Single angled crack and delamination

Remark: number in the bracket represented to the coefficient of variation (CV)

- Single ply case created small carbon fragmentation which is similar to previous study^[1]
- Double ply case shows limited carbon fragmentation, followed by a single fracture.
- 16 ply case shows single fracture with similar compressive strain compared to previous study^[2]



Result summary: SG₁/TC33_n/SG₁



7

Conclusion of hybrid composites result under 4-point flexural test

- Compressive behaviour and failure strain are affected by the thickness of low strain fibre material or the ratio to the thickness of high strain fibre material including fibre types.
- The proper high strain/low strain hybrid system could increase the compressive performance.

Future works

- Study the compressive failure characteristics of carbon-carbon fibre hybrid composites.
- Develop an understanding of the compressive failure of hybrid composites.
- Create damage mode maps under compressive loading

References

[1] P. Suwarta, G. Czél, M. Fotouhi, J. Rycerz, and M. R. Wisnom, "Pseudo-ductility of unidirectional thin ply hybrid composites in longitudinal compression," 33rd Tech. Conf. Am. Soc. Compos. 2018, vol. 2, pp. 1032–1041, 2018.

[2] O. Montagnier and C. Hochard, "Compression characterization of high-modulus carbon fibers," *J. Compos. Mater.*, vol. 39, no. 1, pp. 35–49, 2005.

Thank you for your attention

zl20421@bristol.ac.uk

